Robot Learning

Sim-to-real transfer

Remember...

maximize
$$\mathbb{E}_{w} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t}) \right]$$
 Where does this subject to $s_{t} = f(s_{t}, a_{t}, w_{t})$ and $a_{t} = \pi(s_{t})$

Inverse reinforcement learning (IRL)

- Kalman, 1964: Inverse optimal control for 1D problems
- Boyd et al., 1994: Linear matrix inequality (LMI) for LQ setting
- Ng, Russel, 2000: First MDP formulation and reward ambiguity
- Abbeel, Ng, 2004: Apprenticeship learning (feature matching)
 Ratliff et al., 2006: Max margin planning (MMP)
 Ziebart et al., 2008: Max-Ent IRL

Remember...

Some methods require full knowledge of *f* whereas some require only ability to execute/simulate it.

Why do we need simulations?

- Robots are expensive.
- Robots break and degrade all the time. ... and they will likely break more if you try to train things on them.
- Robots are slow.
- Labeling real world is difficult.

The premise of robot learning

Designing controllers for robots is difficult and does not scale well. Instead, we will collect a lot of experience and let the algorithm handle the rest.

Collecting a lot of experience

OpenAl GPT-3

45 TB of text (Brown et al. 2020)

Language model that produces human-like texts

14,000,000 *images* (Deng et al. 2009)

IM GENET

Image recognition models at human-level proficiency

44,000,000 chess games

(Silver et al. 2017)

Super-human chess engines

We do not have large datasets in robotics

r 3d11 r3d24 -BEJ ada Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection Levine et al., IJRR 2018

Data collection is more expensive and safety-critical when humans are involved

Balancing Efficiency and Comfort in Robot-Assisted Bite Transfer Belkhale et al. ICRA 2022

This lecture is based on:

"Randomization and the reality gap: how to transfer robotic policies from sim to real" by Josh Tobin:

https://youtu.be/ac_W9IgKX2c

Simulated data

- Cheap
- Fast
- Scalable
- Safe
- Labeled
- Not beholden to real-world probability distributions

Labels (and rewards) are free

Left: Recognizing Objects In-the-wild: Where Do We Stand? Loghmani et al., ICRA 2017 Right: From Caroline Lasorsa (Superb AI)

CSCI 699: Robot Learning - Lecture 9

Not beholden to real-world distributions

Swindon's Magic Roundabout from the air Mark Winter, 2016

THE OWNER OF TAXABLE PARTY.

U

-

2222 1/2

ditt

-

Not beholden to real-world distributions

Scalable End-to-End Autonomous Vehicle Testing via Rare-event Simulation O'Kelly et al., NeurIPS 2018

CSCI 699: Robot Learning - Lecture 9

Sim-to-real problem

There is a real danger (in fact, a near certainty) that programs which work well on simulated robots will completely fail on real robots because of the differences in real world sensing and actuation – it is very hard to simulate the actual dynamics of the real world.

> Artificial Life and Real Robots Rodney Brooks, 1992

Today

- Difficulty of using simulated data
- Using simulation data without solving sim-to-real
- Building simulations
- Domain adaptation
- Domain randomization

Physics simulators make big assumptions to run faster

Discrete time

Physics simulators make big assumptions to run faster

Coulomb friction

Rigid bodies

Physics simulators make big assumptions to run faster

What is the friction coefficient?

How about other parameters? Inertia? Damping? Spring constants?

More accurate model \Rightarrow More parameters to learn \Rightarrow More data needed

Photorealistic simulation is expensive.

A Guide to Lidar Wavelengths for Autonomous Vehicles and Driver Assistance Velodyne, 2018

Remember...

Similar problem in sim-to-real:

Small modeling errors cause large control errors.

Neural nets will exploit/overfit to differences in data distributions

Multi-object tracking accuracy: Sim: 63.7% Real: 78.1%

Virtual Worlds as Proxy for Multi-Object Tracking Analysis Gaidon et al., CVPR 2016

Today

- Difficulty of using simulated data
- Using simulation data without solving sim-to-real
- Building simulations
- Domain adaptation
- Domain randomization

Sim data without solving sim-to-real

Prototyping Algorithms

Verify/compare algorithms in simulation

Debugging

Replace the robot with a simulator to debug the full stack

Left: OpenAI Gym Brockman et al., 2016 Right: Robotic Arm Simulation with ROS and Gazebo Dineshkumar (Skyfi Labs)

Sim data without solving sim-to-real

Prototyping Systems

Choose the robot / verify its ability

Test the performance in edge cases, etc. Waymo: 1000x testing in simulation than real-world (2017)

Left: Siemens Tecnomatix Right: Inside Waymo's Secret World for Training Self-Driving Cars Madrigal, The Atlantic (2017)

Today

- Difficulty of using simulated data
- Using simulation data without solving sim-to-real
- Building simulations
- Domain adaptation
- Domain randomization

Building simulations

- 1. Design simulation model
 - This is where we implement physics.
 - In practice, we pick an existing model, e.g., MuJoCo, PyBullet, Gazebo.
- 2. Create scenarios
 - We create 3D models, or get them: ShapeNet, YCB, Dex-Net, Unity, ...
 - We then create a scenario (e.g., decide where to place the objects)

3. Collect data and potentially improve simulation

This is "System ID"

Building simulations

- 1. Design simulation model
 - This is where we implement physics.
 - In practice, we pick an existing model, e.g., MuJoCo, PyBullet, Gazebo.
- 2. Create scenarios
 - We create 3D models, or get them: ShapeNet, YCB, Dex-Net, Unity, ...
 - We then create a scenario (e.g., decide where to place the objects)
- 3. Collect data and potentially improve simulation

Today

- Difficulty of using simulated data
- Using simulation data without solving sim-to-real
- Building simulations
- Domain adaptation
- Domain randomization

Supervised domain adaptation

Think of each simulation as a new task and train a **progressive neural network**.

Supervised domain adaptation

Learn inverse dynamics over a set of simulations.

Supervised domain adaptation

Train in simulation to find a submanifold of the policy space or learn a Bayesian prior that may perform well in the real world.

Weakly supervised domain adaptation

Use weak supervision to learn policies that are robust to distribution shift.

Task loss: our actual objective

Confusion loss: objective for classifying sim vs. real Pairwise loss: objective for aligning states/frames

Self-supervised domain adaptation

Use a model trained on simulation to label real world data. Bootstrapping with such self-supervised labels helps adaptation.

A Self-supervised Learning System for Object Detection using Physics Simulation and Multi-view Pose Estimation Mitash et al., IROS 2017

CSCI 699: Robot Learning - Lecture 9

Unsupervised domain adaptation

Train a GAN to convert labeled simulation data into realistic data.

Using simulation and domain adaptation to improve efficiency of deep robotic grasping Bousmalis et al., ICRA 2018

CSCI 699: Robot Learning - Lecture 9

Today

- Difficulty of using simulated data
- Using simulation data without solving sim-to-real
- Building simulations
- Domain adaptation
- Domain randomization

Domain randomization

Idea: Increase the diversity in simulation domains so that the real world may look like another simulator.

This idea goes back to 1997:

- randomize the important aspects a bit for robustness
- randomize the other aspects so that the controller will ignore them

Domain randomization

CAD²RL for quadcopter collision avoidance

~500 semirealistic textures, 12 floorplans

Domain randomization

Simulators do not even need to be realistic.

We randomize not only the scene but also the objects.

Applications of domain randomization

- Pose estimation
- Object detection
- Localization and tracking
- Visuomotor control
- Manipulation

Domain randomization for dynamics

What if the mismatch between the simulation and the real world is due to dynamics?

Parameter	Range
Link Mass	$[0.25, 4] \times$ default mass of each link
Joint Damping	$[0.2, 20] \times$ default damping of each joint
Puck Mass	[0.1, 0.4]kg
Puck Friction	[0.1, 5]
Puck Damping	[0.01, 0.2]Ns/m
Table Height	[0.73, 0.77]m
Controller Gains	$[0.5, 2] \times$ default gains
Action Timestep λ	$[125, 1000]s^{-1}$

Will a feedforward neural network policy work?

Dexterity with domain randomization

Actions

Object Pose

B We train a control policy using reinforcement learning. It chooses the next action based on fingertip positions

C We train a convolutional neural network to predict the

Observed **Robot States**

Learning dexterous in-hand manipulation OpenAI, IJRR 2020

CSCI 699: Robot Learning - Lecture 9

Why does domain randomization work?

- Training is done over a distribution of domains that contain the real world.
- Domain randomization helps the model identify what to ignore.
- Domain randomization is meta learning.

Domain randomization recipe

- 1. Build a simulator
- 2. Calibrate it to the environment
- 3. Design randomizations
- 4. Train a model
- 5. Evaluate the model in real-world
- 6. Examine failures
- 7. If unhappy, go to step 3

Next time...

Week 10 Fri, Oct 27

LectureMeta & Multi-task learningPresentationMeta & Multi-task learning

Due Homework#3

- Chan et al., Human Irrationality: Both Bad and Good for Reward Inference (2021).
- Julian et al., Never Stop Learning: The Effectiveness of Fine-Tuning in Robotic Reinforcement Learning (2020).
- Kim et al., Bayesian Model-Agnostic Meta-Learning (2018).
- Sodhani et al., Multi-Task Reinforcement Learning with Context-based Representations (2021).
- Shridhar et al., Perceiver-Actor: A Multi-Task Transformer for Robotic Manipulation (2022).